From: Dr. Victor Chia

XPS Analysis Report

Note: This analysis was outsourced to a partnering laboratory of Balazs

From: Dr. Victor Chia

INTRODUCTION

The goal of this analysis was to determine the surface composition and chemistry of an aluminum coupon labeled as "Lot# 59163". Of particular interest was to establish whether the coupon met Novellus Cleaning Specifications (74-106348-00).

XPS was selected because of its surface sensitivity in the upper 5-10 nm of the sample surface. A survey scan was acquired to determine the elements present. This was followed by high resolution scans of the major elements to determine their oxidation/chemical states.

From: Dr. Victor Chia

SUMMARY

Fluorine was out of specification for coupon Lot# 59163 with 4.1 atomic% compared to a spec of <2% for this element.

The aluminum coupon surface was covered with a thin Al_2O_3 layer. Also found on the coupon surface were low to trace levels of AlF_3 , Al oxyfluoride and/or organic fluorocarbon, SiO_2 , oxidized Fe species, sulfate, phosphate, inorganic chloride, Na, Mg, Ca and Cu.

The levels of C, Fe, Cl, Na, Ca, Si and S were within the Novellus Cleaning Specifications. However, the levels of F were higher than the specifications.

From: Dr. Victor Chia

DISCUSSION

- 1. The coupon surface was composed primarily of C, O and Al with low levels of F and trace levels of N, Fe, Na, Mg, Si, P, S, Cl, Ca and Cu (see Table 1).
- 2. The levels of C, Fe, Cl, Na, Ca, Si and S were within the Novellus Cleaning Specifications. However, the levels of F were higher than the specifications (<2%).
- 3. All was found as higher levels of Al_2O_3 and lower levels of All metal and, based on the F levels and chemistry (see below), low levels of AlF_3 and All oxyfluoride (see Table 4). The fact that metallic All is observed indicates that the Al_2O_3 film thickness is less than the XPS information depth (~60-80Å) on this sample.
- 4. Curve-fitting of the F spectrum identified two component peaks. The lower binding peak was consistent with inorganic fluoride while the higher binding energy one was attributable to oxyfluoride and/or organic fluorocarbon (see Table 2).
- 5. The coupon surface contained trace levels of N (as organic species), Fe (as oxidized species), Si (likely as SiO₂), S (primarily as sulfate with possibly lower levels of sulfite), Cl (as inorganic chloride), P (as phosphate), Na, Mg, Ca and Cu. The Cu chemical states were undetermined due to weak signals.

From: Dr. Victor Chia

DISCUSSION (cont'd)

- 6. The chemical states of Na, Mg and Ca were undetermined due to their low levels and the minimal binding energy shifts associated with different forms of these elements.
- 7. C was found primarily as hydrocarbon (C-C, C-H) with significantly lower levels of carbon-oxygen and carbon-nitrogen functionalities and fluorocarbon and/or inorganic carbonate (see Table 3). Most (possibly all) of the organic C, except fluorocarbon was likely attributable to adventitious C (i.e. C adsorbed from atmospheric exposure).

From: Dr. Victor Chia

DISCUSSION (cont'd)

8. The results in Table 1 are compared to the Novellus cleanliness specification to determine if the coupons pass Class 3 cleaning classification.

	Title:	Document Number:
NOVELLUS FIRST IN PRODUCTIVITY	SURFACE CLEANLINESS, PACKAGING, AND PROCESS SPECIFICATIONS	74-106348-00 Rev H
		Page 1 of 77

Cleaning Surface Specification	Analysis by ESCA given in At%	Carbon	Zinc	Chlorine	Fluorine	Sodium	Calcium	Silicon	Sulfur	Iron	Magnesium	Nitrogen
Classification												
Class 1	UHV											
Class 2	UHV +											
	Texturing											
Class 3	Vacuum and/or	<30	<1	<1	<2	<.8	<.5	<1	<.5	<.5	<.5	<2
	Atmosphere											
	Clean											
Class 4	Cosmetic	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Clean											
Class 5	Cosmetic	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Clean											
	(Wet Process											
	Tools)											

From: Dr. Victor Chia

RESULTS

Survey Analysis

- Table 1 shows the atomic concentration in atomic% of the elemental composition.
- Individual spectrum is shown in Figure 1.

Table 1: Survey data

2	С	N	0	F	Na	Mg	Al	Si	Р	s	CI	Ca	Cu	Fe
Sample	26.3	0.5	39.1	4.1	0.2	0.2	26.2	0.7	0.9	0.4	0.4	0.4	0.3	0.2
Novellus Spec	<30	<2	NA	<2	<0.8	<0.5	NA	<1	NA	<0.5	<1	<0.5	NA	<0.5

- a) Normalized to 100% of the elements detected. XPS does not detect H or He.
- b) A dash line "-"indicates the elements is not detected.
- c) A less than symbol "<" indicates accurate quantification cannot be made due to weak signal intensity.

From: Dr. Victor Chia

Figure 1: Survey spectrum of Coupon Lot# 59163

From: Dr. Victor Chia

High Resolution Analysis

 Table 2-4 present high resolution fluorine, carbon and aluminum relative atomic percent of the components detected.

Table 2: High resolution data of Fluorine chemical state

	Fluoride	oxyfluoride and/or fluorocarbon
Sample	47	53

Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

Table 3: High resolution data of Carbon chemical state

	с-с,с-н	C-O, C-N	O-C=0	Fluorocarbon, carbonate?
Sample	80	15	3	2

Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

From: Dr. Victor Chia

High Resolution Analysis

Table 4: High resolution data of Aluminum chemical state

	Al metal	Al ₂ O ₃	AIF ₃ , Al oxyfluoride
Sample	26	55	19

Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

High resolution spectra are shown in Figures 2-12.

From: Dr. Victor Chia

Figure 2: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 3: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 4: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 5: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 6: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 7: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 8: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 9: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 10: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 11: High resolution and chemical state assignments

From: Dr. Victor Chia

Figure 12: High resolution and chemical state assignments

From: Dr. Victor Chia

APPENDIX A

XPS data is quantified using relative sensitivity factors and a model that assumes a homogeneous layer. The analysis volume is the product of the analysis area (spot size or aperture size) and the depth of information. Photoelectrons are generated within the X-ray penetration depth (typically many microns), but only the photoelectrons within the top three photoelectron escape depths are detected. Escape depths are on the order of 15-35 Å, which leads to an analysis depth of ~50-100 Å. Typically, 95% of the signal originates from within this depth.

Analytical Condition

Instrument	PHI Quantum 2000
X-ray source	Monochromated Al-k _α 1486.6eV
Acceptance Angle	±23°
Take-off angle	45°
Analysis area	1400μm x 300μm
Charge Correction	C1s 284.8 eV

From: Dr. Victor Chia

APPENDIX B

XPS does not detect H or He. Values given are normalized to 100% using the elements detected. Detection limits are approximately 0.05 to 1.0 atomic %. High resolution scans were obtained from the major elements of interest to determine their chemical states. Chemical state assignments for a given element have been made by consulting reference data from the literature. The atomic concentrations provided can typically be reproduced for major constituents of sample surfaces to better than ±10%. For elements present at levels below 10 at% down to the detection limit of ~0.05 - 0.5 at% the uncertainty in the reproducibility of the results can be significantly larger.

