From: Dr. Victor Chia

XPS Analysis Report

Note: This analysis was outsourced to a partnering laboratory of Balazs

From: Dr. Victor Chia

INTRODUCTION

The goal of this analysis was to determine the surface composition and chemistry of an aluminum coupon identified as CSI-06. Of particular interest was to establish whether the coupon met the Novellus Cleaning Specification (74-106348-00).

XPS was selected because of its surface sensitivity in the upper 5-10 nm of the sample surface. A survey scan was acquired to determine the elements present. This was followed by high resolution scans of the major elements to determine their oxidation/chemical states.

From: Dr. Victor Chia

SUMMARY

The aluminum coupon surface was covered with a thin Al_2O_3 layer. Also found on the coupon surface were low to trace levels of AlF_3 and/or Al oxyfluoride, organic fluorocarbon, organic N species, nitrate, $Ni(OH)_2$, Ni metal, silicone/silicate, SiO_2 , sulfate/sulfone, inorganic chloride, ZnO, Cu and Ca.

The levels of C, Cl, Ca, Si and S were within the Novellus Cleaning Specification. However, the levels of F were higher than the specification (<2%). No Fe or Na was detected on the coupon.

.

From: Dr. Victor Chia

DISCUSSION

The coupon surface was composed primarily of C, O and Al with low levels of N, F,
 Ni and Zn and trace levels of Si, S, Cl, Ca and Cu (see Table 1)

The levels of C, Cl, Ca, Si and S were within the Novellus Cleaning Specification. However, the levels of F were higher than the specification (<2%). No Fe or Na was detected on the coupon.

- 2. All was found as higher levels of Al_2O_3 and lower levels of All metal and AlF_3 and/or All oxyfluoride (see Table 3). The fact that metallic All is observed indicates that the Al_2O_3 film thickness is less than the XPS information depth (~60-80Å) on this sample.
- F was found as higher levels of inorganic fluoride/oxyfluoride and lower levels of organic fluorocarbon (see Table 4).

From: Dr. Victor Chia

DISCUSSION (cont'd)

4. The coupon surface contained low to trace levels of N (as higher levels of organic species and lower levels of nitrate), Ni (as higher levels of Ni(OH)₂ and lower levels of Ni metal), Si (primarily as silicone and/or silicate with possibly lower levels of SiO₂), S (primarily as sulfate/sulfone with possibly low levels of sulfide), CI (as inorganic chloride), Zn (likely as ZnO), Cu and Ca.

The Cu chemical states were undetermined due to weak signals.

The Ca chemical states were undetermined due to its low levels and the minimum binding energy shifts associated with different forms of this element.

5. C was found primarily as hydrocarbon (C-C, C-H) with lower levels of carbon-oxygen functionalities and fluorocarbon and possibly inorganic carbonate (see Table 2).
Most (possibly all) of the organic C, except fluorocarbon was likely attributable to adventitious C (i.e. C adsorbed from atmospheric exposure).

From: Dr. Victor Chia

DISCUSSION (cont'd)

6. The results in Table 1 are compared to the Novellus cleanliness specification to determine if the coupons pass Class 3 cleaning classification.

**	NOVELLU FIRST IN PRODUCTIVI				Title: SURFACE CLEANLINESS, PACKAGING, AND PROCESS SPECIFICATIONS					Document Number: 74-106348-00 Rev H Page 1 of 77			
Cleaning Surface Specification	Analysis by ESCA given in At%	Carbon	Zinc	Chlorine	Fluorine	Sodium	Calcium	Silicon	Sulfur	Iron	Magnesium	Nitrogen	
Classification	Ose Type												
Class 1 Class 2 Class 3	UHV + Texturing Vacuum and/or Atmosphere Clean	<30	<1	<1	<2	<.8	<.5	<1	<.5	<.5	<.5	<2	
Class 4	Cosmetic Clean	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Class 5	Cosmetic Clean (Wet Process	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

From: Dr. Victor Chia

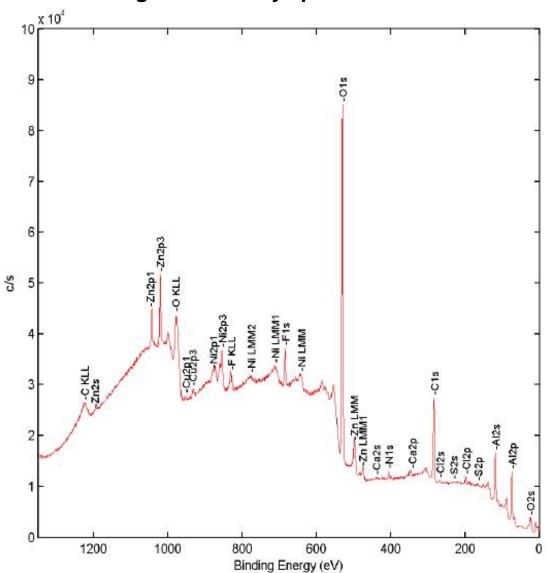
RESULTS

Survey Analysis

- Table 1 shows the atomic concentration in atomic% of the elemental composition.
- Individual spectrum is shown in Figure 1.

Table 1: Survey data

s =	С	N	0	F	Al	Si	S	CI	Ca	Ni	Cu	Zn
CSI-06	26.2	1.1	40.8	4.1	21.9	0.3	0.3	0.5	0.4	2.2	0.2	2.0
NVLS												
Spec	<30	<2	NA	<2	NA	<0.1	<0.5	<1	<0.5	NA	NA	NA


- a) Normalized to 100% of the elements detected. XPS does not detect H or He.
- b) A dash line "-"indicates the elements is not detected.
- c) A less than symbol "<" indicates accurate quantification cannot be made due to weak signal intensity.
- d) A question mark "?" indicates species may be present at or near the detection limit of the technique.

From: Dr. Victor Chia

Figure 1: Survey spectrum of CSI-06

From: Dr. Victor Chia

High Resolution Analysis

 Tables 2-4 present high resolution spectra of relative atomic percent of the components detected.

Table 2: High resolution data of Carbon chemical state

	C-C,C-H	с-о	C=O	O-C=O, COOH, fluorocarbon, carbonate
CSI-06	73	17	6	5

Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

Table 3: High resolution data of Aluminum chemical state

	Al metal	Al ₂ O ₃	AIF ₃ , Al oxyfluoride
CSI-06	8	82	10

Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

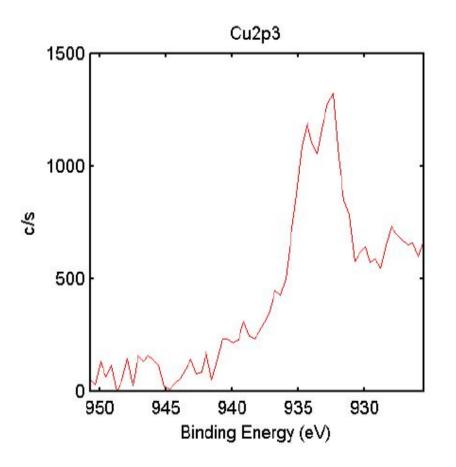
From: Dr. Victor Chia

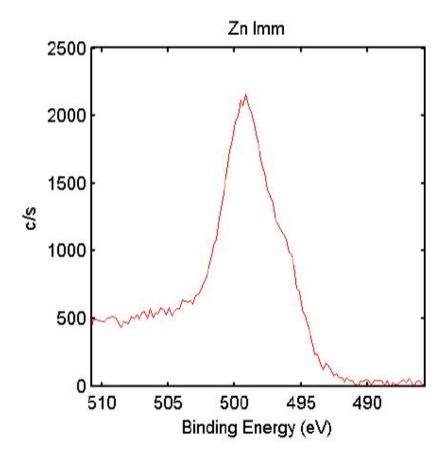
High Resolution Analysis

Table 4: High resolution data of Fluorine chemical state

	Fluoride/oxyfluoride	fluorocarbon
CSI-06	79	21

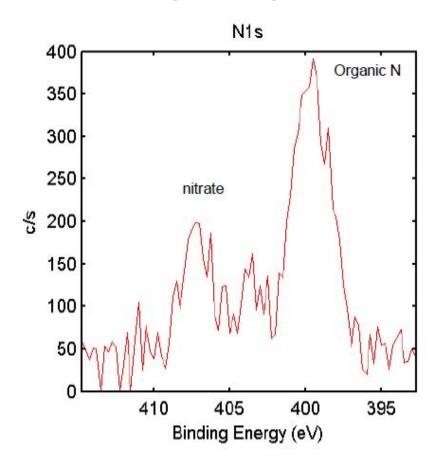
Note: Values in this table are percentages of the total atomic concentration of the corresponding element shown in Table 1

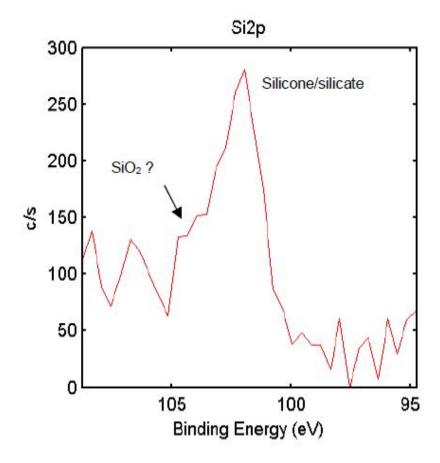

• High resolution spectra for CSI-06 is shown in Figures 2-11.



From: Dr. Victor Chia

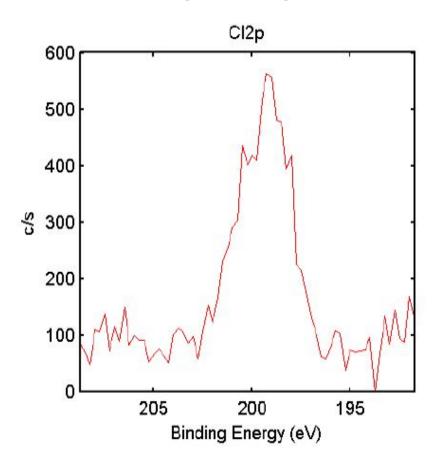
Figure 2: High resolution and chemical state assignments

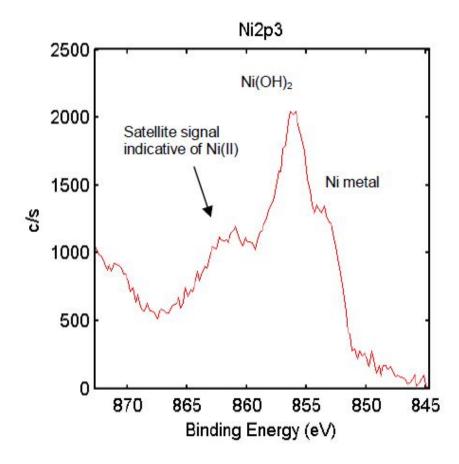




From: Dr. Victor Chia

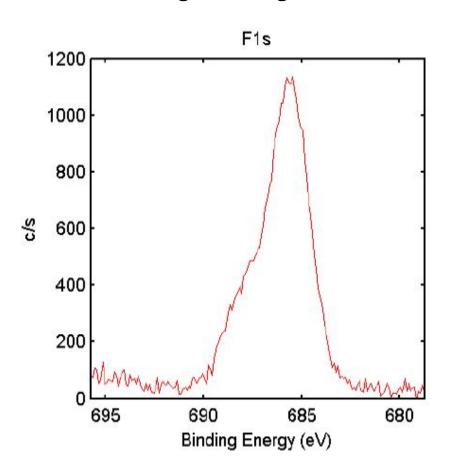
Figure 3: High resolution and chemical state assignments

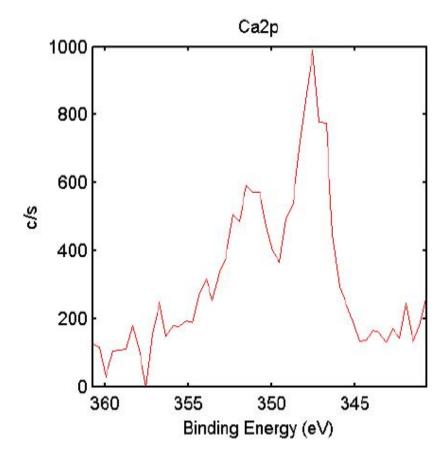




From: Dr. Victor Chia

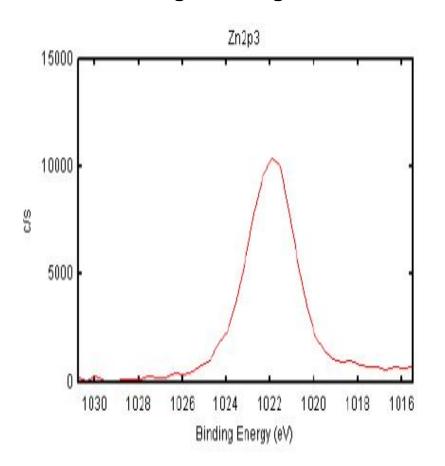
Figure 4: High resolution and chemical state assignments

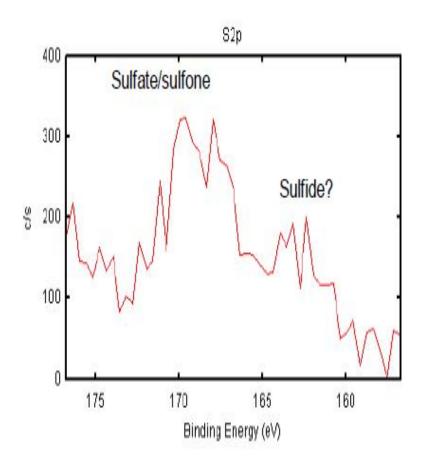




From: Dr. Victor Chia

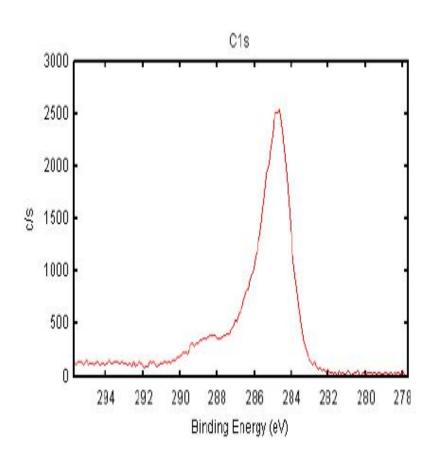
Figure 5: High resolution and chemical state assignments

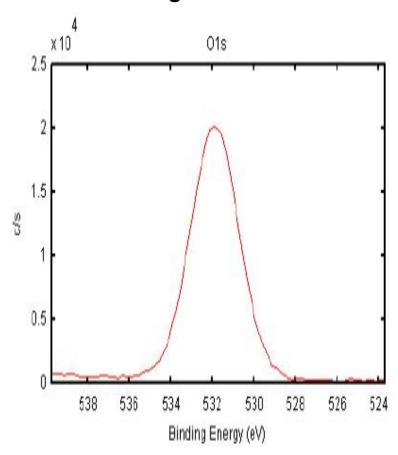




From: Dr. Victor Chia

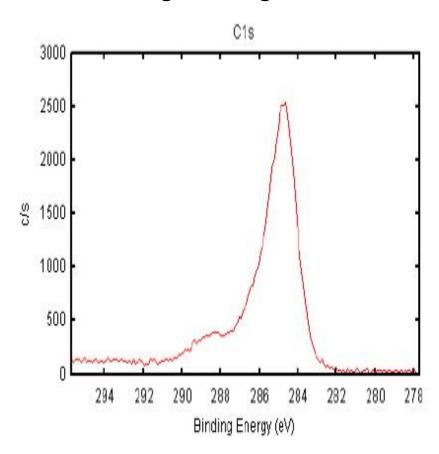
Figure 6: High resolution and chemical state assignments





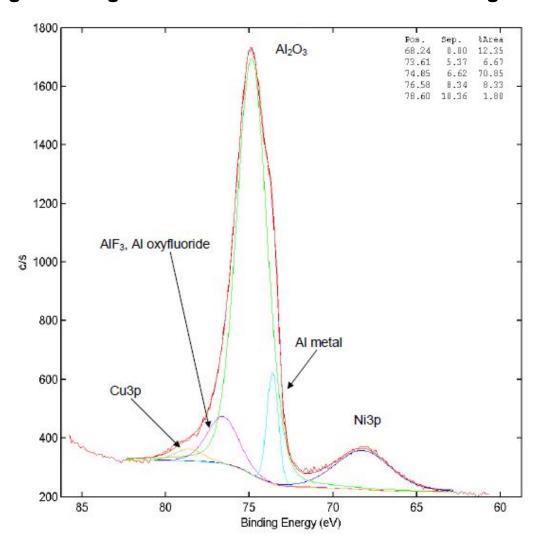
From: Dr. Victor Chia

Figure 7: High resolution and chemical state assignments



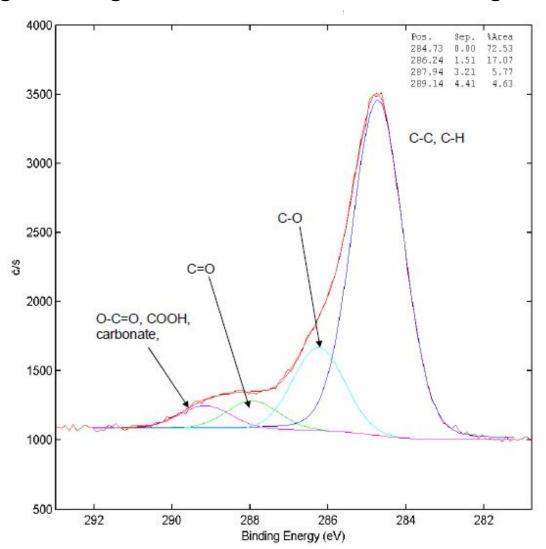
From: Dr. Victor Chia

Figure 8: High resolution and chemical state assignments



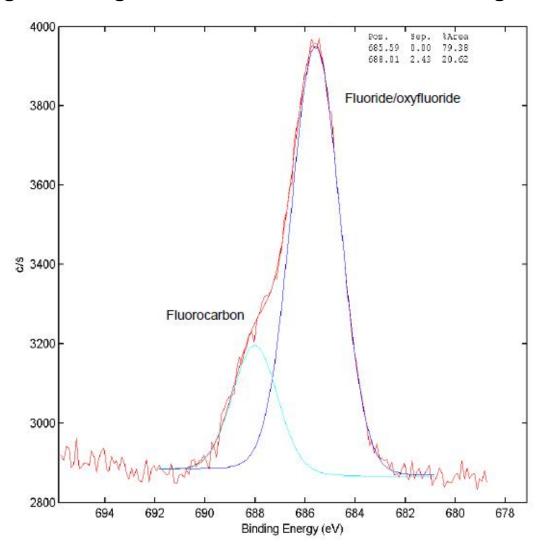
From: Dr. Victor Chia

Figure 9: High resolution and chemical state assignments



From: Dr. Victor Chia

Figure 10: High resolution and chemical state assignments



From: Dr. Victor Chia

Figure 11: High resolution and chemical state assignments

From: Dr. Victor Chia

APPENDIX A

XPS data is quantified using relative sensitivity factors and a model that assumes a homogeneous layer. The analysis volume is the product of the analysis area (spot size or aperture size) and the depth of information. Photoelectrons are generated within the X-ray penetration depth (typically many microns), but only the photoelectrons within the top three photoelectron escape depths are detected. Escape depths are on the order of 15-35 Å, which leads to an analysis depth of ~50-100 Å. Typically, 95% of the signal originates from within this depth.

Analytical Condition

Instrument	PHI Quantum 2000				
X-ray source	Monochromated Al-k _α 1486.6eV				
Acceptance Angle	±23°				
Take-off angle	45°				
Analysis area	1400μm x 300μm				
Charge Correction	C1s 284.8 eV				

From: Dr. Victor Chia

APPENDIX B

XPS does not detect H or He. Values given are normalized to 100% using the elements detected. Detection limits are approximately 0.05 to 1.0 atomic %. High resolution scans were obtained from the major elements of interest to determine their chemical states. Chemical state assignments for a given element have been made by consulting reference data from the literature. The atomic concentrations provided can typically be reproduced for major constituents of sample surfaces to better than ±10%. For elements present at levels below 10 at% down to the detection limit of ~0.05 - 0.5 at% the uncertainty in the reproducibility of the results can be significantly larger.

